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Abstract. Cell proliferation and apoptosis are paral-
leled by altered regulation of ion channels that play
an active part in the signaling of those fundamental
cellular mechanisms. Cell proliferation must - at some
time point - increase cell volume and apoptosis is
typically paralleled by cell shrinkage. Cell volume
changes require the participation of ion transport
across the cell membrane, including appropriate
activity of Cl) and K+ channels. Besides regulating
cytosolic Cl) activity, osmolyte flux and, thus, cell
volume, most Cl) channels allow HCO3

) exit and
cytosolic acidification, which inhibits cell prolifera-
tion and favors apoptosis. K+ exit through K+

channels may decrease intracellular K+ concentra-
tion, which in turn favors apoptotic cell death. K

+

channel activity further maintains the cell membrane
potential, a critical determinant of Ca2+ entry
through Ca2+ channels. Cytosolic Ca2+ may trigger
mechanisms required for cell proliferation and stim-
ulate enzymes executing apoptosis. The switch be-
tween cell proliferation and apoptosis apparently
depends on the magnitude and temporal organization
of Ca2+ entry and on the functional state of the cell.
Due to complex interaction with other signaling
pathways, a given ion channel may play a dual role in
both cell proliferation and apoptosis. Thus, specific
ion channel blockers may abrogate both fundamental
cellular mechanisms, depending on cell type, regula-
tory environment and condition of the cell. Clearly,
considerable further experimental effort is required to
fully understand the complex interplay between ion
channels, cell proliferation and apoptosis.
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Introduction

Cell homeostasis requires a delicate balance be-
tween formation of new cells by cell proliferation
and their elimination by apoptosis. Apoptosis
eliminates abundant and potentially harmful cells
(Green & Reed, 1998). The maintenance of an
adequate cell number requires the replacement of
apoptotic cells or formation of additional cells by
cell proliferation.

Cell proliferation is stimulated by growth factors
(Bikfalvi et al., 1998; Adams et al., 2004; Tallquist &
Kazlauskas, 2004), apoptosis is triggered by stimu-
lation of respective receptors, such as CD95 (Lang
et al., 1998b, 1999; Gulbins et al., 2000; Fillon et al.,
2002), somatostatin receptor (Teijeiro et al., 2002) or
TNFa receptor (Lang et al., 2002a), by cell density
(Long et al., 2003), lack of growth factors (Sturm
et al., 2004) thyroid hormones (Alia et al., 2005), or
adhesion (Davies, 2003; Walsh et al., 2003), by
choline deficiency (Albright et al., 2005), DNA
damage (Kohn & Pommier, 2005), or by exposing
cells to genotoxic or other stressors such as radiation
(Rosette & Karin, 1996), chemotherapeutics (Cariers
et al., 2002; Wieder et al., 2001), oxidants (Rosette &
Karin, 1996), inhibition of glutaminase (Rotoli et al.,
2005), energy depletion (Pozzi et al., 2002) or osmotic
shock (Bortner & Cidlowski, 1998, 1999; Lang et al.,
1998a, 2000b; Maeno et al., 2000; Michea et al., 2000;
Rosette & Karin, 1996).

If cell proliferation is to generate cells similar to
the parent cells, it obviously requires the duplication
of all cell components, such as DNA, cytoskeleton,
mitochondria, etc. To generate cells of similar size as
the parent cells, cell proliferation must at some point
lead to cell volume increase (Lang et al., 1998a).

Hallmarks of apoptosis include nuclear con-
densation, DNA fragmentation, mitochondrial
depolarization, cell shrinkage and breakdown ofCorrespondence to: F. Lang; email: florian.lang@uni-tuebingen.de
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phosphatidylserine asymmetry of the plasma mem-
brane (Green & Reed, 1998). The exposure of phos-
phatidylserine at the cell surface results from the
activation of a scramblase (Zhou et al., 2002), which
is activated by increase of cytosolic Ca2+ activity
(Woon et al., 1999; Dekkers et al., 2002). As mac-
rophages are equipped with receptors specific for
phosphatidylserine (Fadok et al., 2000; Henson et al.,
2001), cells or cellular fragments exposing phospha-
tidylserine at their surface will be rapidly recognized,
engulfed and degraded (Boas et al., 1998). Cell
shrinkage facilitates the engulfment of the dying cells
by phagocytes (Boas et al., 1998). Thus, apoptosis
allows the elimination of the cells without release of
intracellular proteins, which would otherwise cause
inflammation (Gulbins et al., 2000).

Programmed cell death is not limited to nucleated
cells but could similarly affect erythrocytes (Bar-
vitenko et al., 2005; Bosman&Willekens, 2005; Rice&
Alfrey, 2005). Recently, the term ‘‘eryptosis’’ has been
coined (Lang et al., 2005a) to describe apoptosis-like
death of mature erythrocytes, which is characterized
by cell shrinkage and breakdown of phosphatidylser-
ine asymmetry, both typical features of apoptosis in
nucleated cells (Lang et al., 2003a, b, c, e).

Both cell proliferation and apoptosis involve at
some point activation of Cl) channels, K+ channels
and Ca2+ channels. As the respective channel inhib-
itors have been reported to interfere with both cell
proliferation and apoptosis, the channels appear to
play an active role in the machinery leading to
duplication or death of a given cell.

The Role of Ca2+ and Nonselective Cation Channels in

Cell Proliferation and Apoptosis

Overwhelming evidence points to a critical role of
cytosolic Ca2+ activity in the regulation of cell pro-
liferation (Whitfield et al., 1995; Parekh & Penner,
1997; Berridge et al., 1998, 2000, 2003; Santella 1998;
Santella et al., 1998). Growth factors are known to
stimulate Ca2+ release-activated calcium channels
ICRAC (Qian & Weiss, 1997), which has in turn been
shown to trigger Ca2+ entry into and subsequent
Ca2+ oscillations in proliferating cells. The Ca2+

oscillations trigger a wide variety of cellular functions
(Berridge et al., 1998, 2000, 2003; Parekh & Penner,
1997), including the depolymerization of the actin
filaments (Lang et al., 1992, 2000c; Dartsch et al.,
1995; Ritter et al., 1997). The depolymerization of the
actin filaments leads to disinhibition of the Na+/H+

exchanger and/or the Na+, K+, 2Cl) cotransporter
(Fig. 1) and thus leads to increase of cell volume
(Lang et al., 1998a). Activation of ICRAC, Ca2+

oscillations and depolymerization of the actin fila-
ment network all have been shown to be prerequisites
of cell proliferation (Dartsch et al., 1995; Lang et al.,
1992, 2000c; Ritter et al., 1997).

Conversely, the lymphocyte apoptosis following
CD95 receptor triggering is paralleled by inhibition of
ICRAC (Lepple-Wienhues et al., 1999; Dangel et al.,
2005) (Fig. 2). Inhibition of ICRAC presumably serves
to abrogate activation and proliferation of lympho-
cytes and does not necessarily foster apoptotic cell
death. Whether or not cytosolic Ca2+ activity in-
creases at a later stage following CD95 triggering,
remains uncertain. In any case, increase of cytosolic
Ca2+ is not an early event in CD95-induced cell death.

On the other hand, sustained increase of cytosolic
Ca2+ activity has been shown to trigger apoptosis in a
variety of nucleated cells (Parekh & Penner, 1997;
Green & Reed, 1998; Berridge et al., 2000; Spassova et
al., 2004; Liu et al., 2005; Parekh & Putney, Jr., 2005).
Moreover, as illustrated in Fig. 3, Ca2+-permeable
cation channels play a decisive role in apoptosis-like
death of erythrocytes (eryptosis) (Brand et al., 2003;
Lang et al., 2002b; Lang et al., 2003b).

Apoptosis-like erythrocyte death could be trig-
gered by exposure to the Ca2+ ionophore ionomycin
(Berg et al., 2001; Bratosin et al., 2001; Daugas et al.,
2001; Lang et al., 2002b, 2003b) and blunted in the
nominal absence of Ca2+ (Lang et al., 2003b). The
Ca2+-permeable cation channels could be activated
by exposure of erythrocytes to osmotic shock (Huber
et al., 2001), oxidative stress (Duranton et al., 2002),
energy depletion (Lang et al., 2003b) and infection
with the malaria pathogen Plasmodium falciparum
(Brand et al., 2003; Duranton et al., 2003; Lang et al.,
2004a). Energy depletion presumably impairs the
replenishment of GSH and thus weakens the an-
tioxidative defense of the erythrocytes (Mavelli et al.,
1984; Bilmen et al., 2001). The cation channels are
further activated by removal of intracellular and
extracellular Cl) (Huber et al., 2001; Duranton et al.,
2002). The suicidal cation channels are probably
identical to the Na+ and K+ permeability activated
by incubation of human erythrocytes in low ionic
strength (LaCelle & Rothsteto, 1966; Jones & Knauf,
1985; Bernhardt et al., 1991). Similar if not identical
nonselective cation channels are activated by depo-
larization (Christophersen & Bennekou, 1991;
Bennekou, 1993; Kaestner et al., 1999).

Elevated cytosolic Ca2+ concentrations then
stimulate the erythrocyte scramblase (Zhou et al.,
2002), thus leading to the breakdown of phosphati-
dylserine asymmetry (Lang et al., 2003b). The phos-
phatidylserine exposure following osmotic shock is
blunted by amiloride (Lang et al., 2003b) and ethyl-
isopropylamiloride (EIPA) (Lang et al., 2003a), both
putative inhibitors of the cation channel (Lang et al.,
2003b, c). The suicidal erythrocyte cation channels
are activated by prostaglandin E2 (PGE2), which is
released upon osmotic shock (Lang et al., 2005b).

Cell volume-sensitive cation channels are ex-
pressed in a wide variety of nucleated cells, such as
airway epithelia cells (Chan et al., 1992), mast cells

148 F. Lang et al.: Channels, Cell Proliferation and Apoptosis



(Cabado et al., 1994), macrophages (Gamper et al.,
2000), vascular smooth muscle, colon carcinoma and
neuroblastoma cells (Koch & Korbmacher, 1999),
cortical collecting duct cells (Volk et al., 1995), and
hepatocytes (Wehner et al., 1995, 2000). Cation
channels activated by Cl) removal were identified in
salivary and lung epithelial cells (Marunaka et al.,
1994; Tohda et al., 1994; Dinudom et al., 1995). It has
been shown that Cl) influences the channels via a
pertussis toxin-sensitive G-protein (Dinudom et al.,
1995). At present, we do not know the molecular
identity of those channels nor do we know whether or
not they participate in Ca2+ entry and apoptosis.

The Role of K+ Channels in Cell Proliferation and

Apoptosis

A variety of K+ channels have been implicated in the
regulation of cell proliferation (Patel & Lazdunski,

2004; Wang, 2004). Growth factors have been shown
to activate K+ channels (O�Lague et al., 1985; Enom-
oto et al., 1986; Lang et al., 1991; Sanders et al., 1996;
Wiecha et al., 1998; Liu et al., 2001; Faehling et al.,
2001;), and enhanced K+ channel activity has been
observed in a wide variety of tumor cells (DeCoursey
et al., 1984; Nilius &Wohlrab, 1992; Pappone&Ortiz-
Miranda, 1993; Strobl et al., 1995; Mauro et al., 1997;
Skryma et al., 1997; Pappas & Ritchie, 1998; Zhou et
al., 2003; Patel & Lazdunski, 2004; Wang, 2004). As
illustrated in Fig. 1, repetitive activation of Ca2+-
sensitive K+ channels by oscillating cytosolic Ca2+

activity leads to oscillations of cell membrane potential
in ras oncogene-expressing cells (Lang et al., 1991).
Several K+ channel inhibitors have been shown to
disrupt cell proliferation (for review, seeWang, 2004)).
K+ channel activation appears to be particularly
important for the early G1 phase of the cell cycle
(Wonderlin & Strobl, 1996; Wang et al., 1998). The
maintenance of cell membrane potential by K+

Fig. 1. Involvement of channels in the activation of cell proliferation by ras oncogene. In ras oncogene-expressing cells the mitogen

bradykinin triggers the formation of inositol-(1,4,5) trisphosphate (IP3) with subsequent stimulation of intracellular Ca2+ release. The

subsequent activation of the Ca2+ release-activated Ca2+ channel ICRAC leads to Ca2+ entry. Ca2+ activates Ca2+-sensitive K+ channels

leading to K+ exit, hyperpolarization, and Cl) exit through Cl) channels. The subsequent cell shrinkage is required for the initial triggering

of Ca2+ and cell membrane potential oscillations due to repetitive Ca2+ and K+ channel activation. The oscillations of Ca2+ lead to

depolymerization of the cell actin filaments, which disinhibits the Na+/H+ exchanger and the Na+, K+, 2Cl) cotransporter. Electrolyte

accumulation by these carriers eventually leads to cell swelling.
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channels is a prerequisite for Ca2+ entry through
ICRAC (Parekh & Penner, 1997). As discussed above,
ICRAC activation has been shown to be required for
stimulation of cell proliferation.

Reports on the role of K+ channels in apoptosis
are conflicting. In some cells, inhibition of K+

channels appears to favour (Szabo et al., 1996, 1997,
2004; Chin et al., 1997; Miki et al., 1997; Bankers-
Fulbright et al., 1998; Han et al., 2004; Pal et al.,
2004; Patel & Lazdunski, 2004) and activation of K+

channels to inhibit (Jakob & Krieglstein, 1997; Lau-
ritzen et al., 1997) apoptosis. Mice carrying a muta-
tion of a G protein-coupled inward rectifier K+

channel (Weaver mice) suffer from extensive neuronal
cell death (Migheli et al., 1995, 1997; Murtomaki
et al., 1995; Oo et al., 1996; Harrison & Roffler-
Tarlov, 1998). However, in other models, apoptosis
has been reported to be stimulated by activation of
K+ channels (Yu et al., 1997; Wei et al., 2004) and to
be inhibited by increase of extracellular K+ concen-
tration (Prehn et al., 1997; Colom et al., 1998; Lang
et al., 2003e) or inhibition of K+ channels (Gantner
et al., 1995; Lang et al., 2003e). In any case, cellular

loss of K+ appears to be an important trigger of
apoptosis in a wide variety of cells (Beauvais et al.,
1995; Benson et al., 1996; Bortner et al., 1997;
Hughes, Jr. et al., 1997; Bortner & Cidlowski, 1999,
2004; Hughes, Jr. & Cidlowski, 1999; Montague
et al., 1999; Gomez-Angelats et al., 2000; Maeno
et al., 2000; Perez et al., 2000; Yurinskaya et al.,
2005a, b). Activation of K+ channels leads to
hyperpolarization of the cell membrane, thus
increasing the electrical driving force for Cl) exit into
the extracellular space. Thus, if K+ channel activity
is paralleled by Cl) channel activity, it leads to cel-
lular loss of KCl with osmotically obliged water and
hence to cell shrinkage, a hallmark of apoptosis
(Lang et al., 1998a).

As illustrated in Fig. 2, ligation of the CD95
receptor in Jurkat lymphocytes has been observed to
inhibit Kv1.3 K+ channels within a few minutes
(Szabo et al., 1996, 1997, 2004). Kv1.3 is considered
to be the cell volume regulatory K+ channel of Jur-
kat lymphocytes (Deutsch & Chen, 1993). The
channel protein is tyrosine phosphorylated upon
CD95-receptor stimulation (Szabo et al., 1996;
Gulbins et al., 1997) and its inhibition requires Lck56

(Szabo et al., 1996; Gulbins et al., 1997). Similar to
CD95 receptor triggering, the sphingomyelinase
product ceramide inhibits Kv1.3 and induces apop-
tosis (Gulbins et al., 1997). Tyrosine phosphorylation
of Kv1.3 has been reported to similarly inhibit
channel activity in other systems (Holmes et al.,
1996). Kv1.3 is stimulated by the serum- and

Fig. 2. Regulation of transport mechanisms in Jurkat T cells fol-

lowing stimulation of the CD95 receptor. CD95 stimulation is

followed by activation of anion channels (ORCC) and, with delay,

of cellular osmolyte release channels, as well as inhibition of Na+/

H+ exchange, the K+ channel Kv1.3 and the Ca2+ channels

ICRAC.

Fig. 3. Channel regulation in eryptosis. Several triggers of eryp-

tosis (e.g., osmotic shock) stimulate the release of PGE2 which

activates Ca2+ permeable cation channels. The subsequent increase

of cytosolic Ca2+ activates Ca2+ sensitive K+ channels, which lead

to cell shrinkage due to loss of K+, hyperpolarization and Cl) exit

through Cl) channels. Ca2+ in addition activates a scramblase,

which breaks down the phosphatidylserine asymmetry of the cell

membrane. Cell shrinkage activates a phospholipase leading to

formation of platelet-activating factor, sphingomyelinase activa-

tion, ceramide formation and further scramblase activation.
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glucocorticoid-inducible kinase (Lang et al., 2003a),
which in turn inhibits apoptosis (Aoyama et al.,
2005). The early inhibition of Kv1.3 is followed by
late activation of Kv1.3 upon CD95 ligation (Storey
et al., 2003). The early inhibition of Kv1.3 channels
following CD95 triggering prevents premature cell
shrinkage, which would otherwise interfere with the
signaling of apoptosis (Lang et al., 1998a). The late
activation of Kv1.3 channels during the execution
phase of apoptosis supports apoptotic cell shrinkage
(Storey et al., 2003).

As illustrated in Fig. 3, Ca2+-sensitive K+

channels (Gardos channels) are activated by in-
creased cytosolic Ca2+ activity in suicidal erythro-
cytes (Gardos, 1958; Grygorczyk & Schwarz, 1983;
Leinders et al., 1992; Brugnara et al., 1993; Dunn,
1998; Pellegrino & Pellegrini, 1998; Shindo et al.,
2000; Del Carlo et al., 2002). The activation of the
channels leads to hyperpolarization and due to the
high erythrocyte Cl) permeability, to parallel exit of
K+ and Cl). The cellular loss of KCl and subsequent
cell shrinkage stimulate eryptosis (Lang et al., 2003d).
Accordingly, increase of extracellular K+ or phar-
macological inhibition of the Gardos channels blunts
the cell shrinkage and apoptosis following exposure
to the Ca2+ ionophore ionomycin (Lang et al.,
2003d). The cell shrinkage following Gardos channel
activation triggers the formation of platelet activating
factor PAF and subsequent activation of sphingo-
myelinase with formation of ceramide (Lang et al.,
2005c). Ceramide then potentiates the pro-apoptotic
effect of Ca2+ (Lang et al., 2004b, 2005c).

The Role of Anion Channels, Osmolyte Transport and

pH Regulation in Cell Proliferation and Apoptosis

Anion channels have been shown to be activated
during cell proliferation (Shen et al., 2000; Nilius &
Droogmans, 2001; Varela et al.2004) and anion
channel blockers have been shown to interfere with
cell proliferation (Phipps et al., 1996; Pappas &
Ritchie, 1998; Rouzaire-Dubois et al., 2000; Shen
et al., 2000; Wondergem et al., 2001; Jiang et al.,
2004). Moreover, impaired cell proliferation has been
observed in ClC3-deficient cells (Wang et al., 2002).
Possibly, the signaling of cell proliferation needs at
some stage transient cell shrinkage, which may re-
quire the activation of Cl) channels. Usually, intra-
cellular Cl) is above electrochemical equilibrium and
activation of Cl) channels leads to Cl) exit and thus
depolarization. As long as K+ channels are active,
the Cl) exit is paralleled by exit of K+. The loss of
KCl and osmotically obliged water shrinks the cells
(Lang et al., 1998a). Cell shrinkage is, for instance,
required for the triggering of cytosolic Ca2+ oscilla-
tions in ras oncogene-expressing cells (Ritter et al.,

1993). The Ca2+ oscillations are in turn needed for
the stimulation of cell proliferation (Fig. 1). At a later
stage, proliferating cells swell due to a shift of the cell
volume regulatory set point towards greater volumes
and subsequent stimulation of Na+/H+ exchange
and/or Na+,K+,2Cl) cotransport (Fig. 1). At this
later stage activation of Cl) channels either tends to
impede cell proliferation or maintains the activity of
Na+/H+ exchange and/or Na+,K+,2Cl) cotrans-
port by keeping the actual cell volume below the new
set point volume.

CD95 induced apoptosis of Jurkat cells (Szabo
et al., 1998) and the TNFa- or staurosporine-induced
apoptosis of various cell types (Maeno et al., 2000;
Okada et al., 2004) is paralleled by activation of Cl)

channels (Fig. 2). In Jurkat cells the same channels
are activated by osmotic cell swelling and are
required for regulatory cell volume decrease (Lepple-
Wienhues et al., 1998). In those cells activation of the
Cl) channels by cell swelling (Lepple-Wienhues et al.,
1998) as well as by stimulation of the CD95 receptor
(Szabo et al., 1998) requires the Src-like kinase Lck56.
The kinase is activated by ceramide (Gulbins et al.,
1997), which is released by sphingomyelinase-medi-
ated hydrolysis of sphingomyelin after stimulation of
the CD95 receptor. In lymphocytes from patients
with cystic fibrosis, outwardly rectifying Cl) channels
(ORCC) are resistant to activation by protein kinase
A but could still be activated by cell swelling and
Lck56 (Lepple-Wienhues et al., 2001).

Activation of Cl) channels is required for stimu-
lation of apoptosis, which is blunted or even disrupted
by Cl) channel inhibitors. Specifically, the respective
Cl) channel blockers inhibited apoptosis in CD95-in-
duced Jurkat cell apoptosis (Szabo et al., 1998), TNFa-
or staurosporine-induced apoptosis of various cell
types (Maeno et al., 2000; Okada et al., 2004), apop-
totic death of cortical neurons (Wei et al., 2004), anti-
mycin A-induced death of proximal renal tubules
(Miller & Schnellmann, 1993). In addition, chloride
channel blockers inhibited GABA-induced enhance-
ment of excitotoxic cell death of rat cerebral neurons
(Erdo et al., 1991); cardiomyocyte apoptosis (Takah-
ashi et al., 2005) and eryptosis (Myssina et al., 2004).

Activation of Cl) channels leads to cell shrinkage
by triggering cellular loss of KCl (see above). Some
anion channels further allow the permeation of or-
ganic osmolytes such as taurine (Lang et al., 2003e),
which are released by cells undergoing apoptosis
(Lang et al., 1998b; Moran et al., 2000). The loss of
the organic osmolytes then contributes to cell
shrinkage (Lang et al., 1998a). Moreover, organic
osmolytes stabilize cellular proteins (for review, see
(Lang et al., 1998a) and their loss could, indeed,
destabilize proteins. For instance, inhibition of ino-
sitol uptake has been shown to induce renal failure
presumably due to apoptotic death of renal tubular
cells (Kitamura et al., 1998).
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Many Cl) channels further allow the passage of
HCO3

) and their activation thus leads to cytosolic
acidification, a typical feature of cells entering into
apoptosis (Lang et al., 2002a; Wenzel & Daniel,
2004). Acidification may promote DNA fragmenta-
tion, as DNase type II has its pH optimum in the
acidic range (for review, see Shrode et al., 1997).
Along those lines, CD95-induced apoptosis is accel-
erated by inhibition of Na+/H+ exchange (Lang
et al., 2000a).

The Dual Role of Ion Channels – a Paradox?

At first glance it is surprising that the same or similar
channels could stimulate or support both cell prolif-
eration and apoptosis. It should be kept in mind,
though, that the effect of channel activation depends
on further properties of the cell. For instance, acti-
vation of K+ channels without parallel activity of
electrogenic anion transporters or Cl) channels may
hyperpolarize but not shrink the cell (Lang et al.,
1998a). The influence of K+ channel activity and cell
membrane potential on cytosolic Ca2+ activity de-
pends on the activity of Ca2+ channels.

Moreover, the temporal pattern of channel acti-
vation may be important. For instance, the functional
impact of oscillating K+ channel activity typical for
proliferating cells (Pandiella et al., 1989; Lang et al.,
1991) has effects different from sustained K+ channel
activation typical for apoptotic cells (Lang et al.,
2003d). Oscillatory Ca2+-channel activity leading to
fluctuations of cytosolic Ca2+ concentration could
depolymerize the cytoskeleton (Lang et al., 1992,
2000c; Dartsch et al., 1995; Ritter et al., 1997) but
may be too short-lived to activate caspases (Whitfield
et al., 1995) or the scramblase (Woon et al., 1999;
Dekkers et al., 2002).

Finally, the amplitude of channel activity may be
decisive for the outcome. For instance, the amplitude
of TASK-3 K+ channel activity observed during
apoptosis is one order of magnitude higher than the
activity of the same channels in tumor cells (Patel &
Lazdunski, 2004; Wang, 2004). Similarly, the Ca2+

entry required for stimulation of mitogenic tran-
scription factors may remain below the Ca2+ entry
required for triggering of apoptosis (Whitfield et al.,
1995).

Conclusions

Ion channels play an active role in the concerted
cellular mechanisms leading to cell proliferation and
apoptosis. They participate in the appropriate
adjustment of cell volume and influence cytosolic pH
and Ca+ concentrations.

Typically, stimulation of cell proliferation is fol-
lowed by early cell shrinkage requiring activation of
Cl) and K+ channel activity, by cytosolic alkalin-
ization (supported by activation of the Na+/H+

exchanger and impeded by activation of HCO3
)-per-

meable Cl) channels), and by Ca2+ oscillations
(requiring activation of Ca2+ channels). The Ca2+

oscillations are maintained by Ca2+ entry through
Ca2+ release-activated channels ICRAC, which in turn
require K+ channel-dependent maintenance of cell
membrane polarization. The Ca2+ oscillations lead
to depolymerization of the actin filament network,
with subsequent disinhibition of Na+/H+ exchanger
and/or Na+,K+,2Cl) resulting in cell swelling.

Typically, apoptosis eventually leads to cell
shrinkage due to activation of K+ and/or Cl) chan-
nels and organic osmolyte release. The activation of
Cl) channels and inhibition of Na+/H+ exchangers
leads to cytosolic acidification. While ICRAC is
inhibited during CD95-induced apoptosis, sustained
Ca2+ entry through Ca2+-permeable cation channels
is able to trigger apoptosis.

Several channels play dual roles in both cell
proliferation and apoptosis. The effect of channel
activation critically depends on the temporal pattern
and amplitude of channel activity as well as the
interplay with other channels, transporters and sig-
naling pathways.

Despite the generation of a tremendous body of
experimental evidence we are still far from fully
understanding the complex interplay between chan-
nel activity and signaling of proliferating or dying
cells. Clearly, further experimental efforts are needed
to address the many open questions.
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